Closing Wed. Apr 6: HW_1A, 1B, 1C

Print off Worksheet 1 ("The Area
Problem") for quiz section tomorrow.

See new postings online (Riemann Sums summary)

Entry Tasks:

(a) Assume $f^{\prime \prime}(x)=5 \sqrt{x}+x$, $f(0)=3, f(1)=4$
Find $f(x)$.
(b) Ron steps off the 10 meter high dive at his local pool. Find a formula for his height above the water.

5.1 Defining Area

In Calculus I, you defined
$\mathrm{f}^{\prime}(\mathrm{x})=$ `slope of the tangent at x^{\prime}
$=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

In Calculus II, we will see that antiderivatives are related to the area 'under' a graph

$$
=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

